

11 December 2023

Warm-up: For which values of p does $\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} - p I_{2 \times 2}$ have an inverse?

Any system of linear equations can be represented as a matrix equation

If A^{-1} exists, then

is the unique solution to the system.

But what if A^{-1} doesn't exist?

This could be because number of variables \neq number of equations. 0

This could be because det(A) = 0. 0

$A\vec{x} = \vec{b}$

 $\vec{x} = A^{-1}\vec{h}$

The Rouché–Capelli Theorem

The system $A\vec{x} = \vec{b}$ has at least one solution if and only if $rank(A) = rank([A \ \vec{b}])$.

Reminder: A is the "coefficient matrix", and $[A \ b]$ is the "augmented matrix".

If there are any solutions, the collection of all solutions has dimension $n - \operatorname{rank}(A)$, where n is the number of variables.

Dimension: 0

The matrix

$A = \begin{bmatrix} 5 & 2 & 7 \\ 1 & 0 & 1 \\ 12 & 7 & 19 \end{bmatrix}$ has determinant 0 (and rank 2, which we calculated last week).

What does that mean for $A\vec{x} = \vec{b}$?

 $\begin{cases} 5x + 2y + 7z = 6\\ x + z = 4\\ 12x + 7y + 19z = 9 \end{cases}$ rank(A) = 2rank(A) = 3

The coefficient and augmented matrices have different ranks, so there are no solutions to the system.

 $\begin{cases} 5x + 2y + 7z = 10 \\ x + z = 4 \\ 12x + 7y + 19z = 13 \end{cases}$

rank(A) = 2rank(A|b) = 2

The coeff. and augmented matrices have the same rank, so the system does have at least one solution. The space of all solutions has dimension (# of variables) - (rank of A) = 3 - 2 = 1,so the set of solutions is a LINE in 3D space.

describing solutions to a system. • If $n - \operatorname{rank}(A) = d$, we have d free variables. We can choose which of the variables are free.

How can we describe the solutions nicely when there are infinitely many?

A free variable is a variable whose value can be set to anything when

Ex 3 again 5x + 2y + 7z = 10x + z = 412x + 7y + 19z = 13

We know we have exactly one free variable. We can pick any one of x or y or z for that variable. With x free, all solutions look like (x, x-9, 4-x) With y free: (x,y,z) = (y+9, y, -y-5)With z free: (x,y,z) = (4-z, -5-z, z)

ree varia decs

rank(A) = 2rank(A|b) = 2(# of vars.) - rank(A) = 1

Rank and delerminant $\begin{cases} 5x + 2y + 7z = 6 \\ x + z = 4 \\ 12x + 7y + 18z = 9 \end{cases} A = \begin{bmatrix} 5 & 2 & 7 \\ 1 & 0 & 1 \\ 12 & 7 & 18 \end{bmatrix} det(A) \neq 0$ rank(A) = 3 n-rank(A) = 0 $\begin{cases} 5x + 2y + 7z = 6\\ x + z = 4\\ 12x + 7y + 19z = 9 \end{cases}$ $A = \begin{bmatrix} 5 & 2 & 7 \\ 1 & 0 & 1 \\ 12 & 7 & 19 \end{bmatrix}$ del(A) = 0rank(A) = 2 $\begin{cases} 5x + 2y + 7z = 10 \\ x + z = 4 \\ 12x + 7y + 19z = 13 \end{cases}$

For an $n \times n$ matrix A, det(A) = 0 if and only if rank(A) < n.

has only zeros?

• (x, y, z) = (0, 0, 0) is a solution.

- - In that case there will be infinitely many solutions.

What can we say about a square system $A\vec{x} = \vec{0}$ where the right-side

 $\begin{cases} 5x + z = 0\\ 2x + 2y + 3z = 0\\ -8x + 2y + z = 0 \end{cases}$

In order to have any other solutions, the coefficient matrix must have a determinant of 0 (because if not then we could solve $\vec{x} = A^{-1}\vec{0} = \vec{0}$). The set of all solutions will form a line or a plane in 3D space.

Systems of equations appear in many kinds of tasks. They are not always in the format $\begin{cases} -x + -y = -\\ x + -y = - \end{cases}$.

Using y as a free variable, ^{4y} for any y.

Task: Describe *all* vectors $\vec{v} = \begin{vmatrix} x \\ y \end{vmatrix}$ for which $\begin{vmatrix} 6 & 4 \\ 1 & 3 \end{vmatrix}$ $\vec{v} = 7 \vec{v}$.

In other words, these are all the multiples of [4,1].

Elgenvectors and eigenvalues

For a square matrix A, if we have $A\vec{v} = \vec{sv}$

for some number *s* and some vector $\vec{v} \neq \vec{0}$ then • the vector \vec{v} is called an eigenvector of A, and • the number s is called an eigenvalue of A.

Note that if \vec{v} is an eigenvector, any scalar multiple of \vec{v} will also be an eigenvector.

We just saw that

Using this new vocabulary, we can say that • [4,1] is an eigenvector of $\begin{bmatrix} 6 & 4 \\ 1 & 3 \end{bmatrix}$. • 7 is an eigenvalue of $\begin{bmatrix} 6 & 4 \\ 1 & 3 \end{bmatrix}$.

If you know an eigenvalue of a matrix, the method we already used is how you find eigenvectors. But how do you find eigenvalues?

Eigenvectors and eigenvalues

$\begin{bmatrix} 6 & 4 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix} = 7 \begin{bmatrix} 4 \\ 1 \end{bmatrix}.$

Example: Find the eigenvalues of $\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$.

del(A-pI) = 0if p = -1, p = 4 $\begin{vmatrix} 1 & 5 & 2 \\ 3 & 2 & 5 \end{vmatrix} \times \begin{vmatrix} x \\ y \\ y \\ 0 \end{vmatrix}$ If $det\binom{1-s}{3} \binom{2}{2-s} \neq 0$ then this has exactly 1 solution (which will be $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$). If $det\binom{1-s}{3} \binom{2}{2-s} = 0$ then this has ∞ solutions. We want

(1-s)(2-s) - (2)(3) = 0.So the eigenvalues are s = -1 and s = 4.

The eigenvalues of A are the values of s for which det(A - sI) = 0.

Proof: if $\vec{Av} = \vec{sv}$ and $\vec{v} \neq \vec{0}$ then

FILAIMA CLACKVALUES

 $\vec{Av} = I(\vec{sv})$ $\vec{Av} - \vec{Isv} = \vec{0}$ $(A - IS)\vec{v} = \vec{0}$ with $\vec{v} \neq \vec{0}$ $\det(A - Is) = 0$

In most book/websites, the Greek lowercase lambda λ is used for eigenvalues.

Determinants and eigenvalues are also related in the following way:

FILLES CICLERES

The eigenvalues of A are the values of λ for which det $(A - \lambda I) = 0$.

If $\lambda_1, ..., \lambda_n$ are the eigenvalues of A (counted) with algebraic multiplicity*), then

 $det(A) = \lambda_1 \times \lambda_2 \times \cdots \times \lambda_n.$

* We will define this in January.

For an $n \times n$ matrix A, either...

ALL of these are true:
A is invertible
det(A) ≠ 0
0 is not an eigenvalue
rank(A) = n

ALL of these are true:
A is non-invertible
det(A) = 0
0 is an eigenvalue
rank(A) < n

Or

Task: Find the eigenvalues of $A = \begin{bmatrix} 3 & 10 \\ 1 & 5 \end{bmatrix}$.

Solving $(3 - \lambda)(5 - \lambda) - (10)(1) = 0$ gives $\lambda_1 = 4 + \sqrt{11}$ and $\lambda_2 = 4 - \sqrt{11}$.

Task: Find the eigenvalues of $A = \begin{bmatrix} 2 & -10 \\ 1 & 8 \end{bmatrix}$.

del(A) = 0(2-s)(8-s) + 10 = 0 $s^2 - 10s + 26 = 0$

What does 1-4 mean? Next week: complex numbers!

$\Delta = (-10)^2 - 4(1)(26)$ = 100 - 104

 $s = (10 \pm \sqrt{-4})/2$

